Received: April 27, 1982

NEW SYNTHESES OF PENTAFLUOROTELLURIUM HYPOCHLORITE

Carl J. Schack and Karl 0. Christe Rocketdyne, a Division of Rockwell International Canoga Park, California 51304 (U.S.A.)

SUMMARY

Chlorination of pentafluoroorthotelluric acid with either chlorine fluorosulfate or chlorine monofluorjde furnishes pentafluorotellurium hypochlorite in new, high yield reactions. Additional characterizing data for this useful hypochlorite are presented.

INTRODUCTION

Covalent hypochlorites are reactive compounds which have been successfully employed in numerous synthetic applications [1]. Pentafluorotelluriu **hypochlorite was reported by Seppelt and Nothe several years ago [2]. Their synthetic procedure involved treatment of the mercury salt of the pentafluoroorthotelluric acid with chlorine monofluoride.**

$$
Hg(0TeFE)2 + 2CIF \longrightarrow HgF2 + 2TeFE0Cl
$$

A quantitative yield was claimed. However , the required mercury salt must be prepared from TeF₅0H and was obtained in only 72% yield [2]. Since the reactions of CIF and ClOSO₂F with either fluorocarbon alcohols [3] or acids **[4,5] resulted in good yields of the corresponding hypochlorites, their reaction with TeF OH was examined as a possible simple, direct route to 5** TeF₅0Cl.

0022-l 139/82/0000-0000/\$02.75 0 Elsevier Sequoia/Printed in The Netherlands

EXPERIMENTAL

Volatile materials were manipulated in a stainless steel vacuum line equipped with Teflon FEP U-traps and 3lh stainless steel valves and a Heise Bourdon-Tube type gauge. Pentafluoroorthotelluric acid was prepared by the method of Seppelt [Z] with slight modification. Chlorine fluorosulfate and chlorine monofluoride were synthesized as reported [h,7]. Sodium fluoride pellets were purchased from Harshaw. Infrared spectra were obtained using 5 cm path length stainless steel cells with AgCl or Csl windows. Raman spectra were recorded on a Cary Model 83 spectrophotometer using the 4880 i line of an Ar ion laser with the sample in a sealed quartz tube cooled to -100 Oc. Mass spectra were measured with an EAI Quad 300 Quadrupole Spectrometer and 19 F nmr spectra were determined with a Varian EM399 spectrometer operating at 84.6 MHz.

Synthesis of TeF,OCl Using CIOSO21 >

A 30 ml stainless steel cylinder was loaded with TeF₅0H (4.76 mmol) and ClOSO₂F (4.41 mmol) at -196^oC. The cylinder was allowed to warm slowly over**night to room temperature where it remained for several hours. Separation of the products was accomplished by fractional condensation through U-traps** cooled at **-78, -112, and -196⁰C** while keeping the reaction cylinder at -30⁰C. By-product HOSO₂F was retained in the cylinder and unreacted TeF₅OH (0.44 mmol) was found in the -78^O trap. The TeF₅0Cl (4.31 mmol) was obtained in the **-112OC trap and only traces of unexamined material passed to the -1~6~ trap. Based on the limiting reagent, C10S02F, the yield of TeF50Cl was 97.7%. The** <code>identification</code> of the <code>TeF</sup>5OCI</code> was based on its 19 F nmr spectrum which agree **with the literature [2] and on its mass, infrared, and Raman spectra. In** addition, the reported b.p. of 38^oC was verified and the previously unreported **vapor pressure temperature correlation was measured, (T'C;P,mm): -46.3, 11; -32.9, 26; -23.3, 45; -14.2, 77; 0.0, 159; 9.2, 236; 20.1, 383. This relation is described by the equation log P=7.8623 - 1548.5/T°K. The latent heat of vaporization of TeF OCl is 7.08 Kcal/mol, and the derived Trouton constant is 22.8 indicating a nonassociated liquid**

394

Synthesis of TeF,OCl Using ClF r'

A 30 ml stainless steel cylinder was loaded with TeF₅0H (2.80 mmol) **at** -196'c. **After warming the cylinder to -78'C, CIF (4.82 mmol) was gradually bled into it, and finally the closed cylinder was allowed to warm to room temperature for a couple of hours. The reaction products were seoarated by fractional condensation at -78, -95, and -196OC with only a short** pumping period. Unreacted CIF (1.96 mmol) contaminated with some FC10₂ and **Te-F type material passed to the** -196'c **trap. The higher temperature fractions** consisted of TeF₅OCl and HF. By condensing this material into a cylind **containing NaF pellets and allowing it to stand overnight at ambient temperature, the HF was removed by complexing and a subsequent fractionation furnished** pure TeF₅0Cl (2.58 mmol). Based on the limiting reagent TeF₅0H, the yield of **the hypochlorite was 92%.**

RESULTS AND DISCUSSION

It was found that either chlorinating agent reacted readily to provide the hypochlorite in high yield (90 + %).

$$
TeFEOH + CIX
$$
 $TeFEOCl + HX (X=F, OSO2F)$

The observed direct conversion of TeF₅0H to TeF₅0Cl makes this an attractive method for synthesizing the hypochlorite. When CIOSO₂F is used as the chlorinating agent, it is necessary to use an excess of TeF₅OH (5-10 mol%) ove CIOSO₂F in order to facilitate separation of the TeF₅0Cl, which is easy from TeF₅0H but difficult from C10S0₂F. In the case of ClF as the chlorine source, **it should be used in excess to consume the TeF OH efficiently. 5 However, the** by-product HF must be removed from TeF₅0Cl by complexing in order to produce **pure hypochlorite.**

Although most of the observed properties for TeF_cOCl agreed well with those **reported [2] some discrepancies were noted. In the infrared spectrum a very strong band at 708 cm -1 was listed. In none of our samples was such an** absorption observed. The mass spectrum of TeF_EOCl exhibited all the ions

previously reported except TeF40+. However, some ions not previously given were observed. These included; TeF40Cl+, TeF30+, TeF20C and TeFO+. Peak intensities due to the various Te and Cl isotopes confirmed these assignments. Investigation of the chemistry of TeF_EOCl is in progress.

ACKNOWLEDGEMENT

The authors gratefully acknowldege support for this work by the U. S. Air Force Office of Scientific Research under Contract F49620-81-C-0020

REFERENCES

1 C. J. Schack and K. O. Christe, Israel J. Chem., <u>17</u> (1978) 20 **2 K. Seppelt and D. Nothe, Inorg. Chem., 12 (1973) 2727. - 3 A. Majid and J. M. Shreeve, Inorg. Chem., 13 (1974) 2710. - 4 D. D. DesMarteau, J. Am. Chem. Sot., 100 (1978) 340. 5 C. J. Schack and K. 0. Christe, J. Fluorine Chem., 12 (1978) 325. - 6 C. J. Schack and R. D. Wilson, Syn. Inorg. Metal-Org. Chem., 2 (1973) 35 3.** 7 C. J. Schack and R. D. Wilson, Inorg. Chem., 9 (1970) 311.